Advanced Visual Quantum Mechanics – Classical Probability Part 1

1.  Introduction

In classical mechanics you are used to working with deterministic systems:  whether you use Newton’s Laws, Lagrangian Mechanics, or Hamilton’s equations, you can solve a system of equations to give you the position, momentum, acceleration, etc. all as functions of time – telling you the exact state of the particle at any given time.  In quantum mechanics this type of information is not really available at all.  The equations that you solve tell you the probability distributions of the different state variables – essentially you know what the probability is of a particle being in some location with some momentum or some energy.  (What we usually mean by probability in this context is if you set up lots of identical situations and measure them all at once the distribution of results that you get is the probability distribution.  In this sense you would also get a probability distribution for a classical system but it would be due to measurement errors.  The probability distributions that you get in quantum mechanics are not due to this type of error – they are intrinsic to the system.)

In order to help you  get used to thinking about probability distributions in a familiar context, this interactive engagement has you apply the ideas of probability to simple classical dynamical systems.

2.  Balls on Tracks
Consider the experiment shown in figure 2a.  A series of balls is set rolling toward the right at a small velocity v0.  In your calculations ignore this initial velocity, the effects of friction, and the time that the ball spends on the two nearly vertical sections of the track.
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Figure 2a:  Diagram of balls on tracks experiment

2.1 Balls on Tracks - Initial Calculations

Exercise 2.1a:  Describe the speed of the ball throughout its motion, and sketch velocity vs. position (v vs. x) from 0 to 2L on the graph provided.
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Exercise 2.1b:  Determine the ratio v2/v1, where v1 is the speed of the ball on level 1 and v2 is the speed on level 2.  Explain how you arrived at your answer.

Exercise 2.1c:  Determine the ratio t2/t1,where t1 is the time the ball spends on level 1 and t2 is the time it spends on level 2.  Explain how you arrived at your answer.

2.2 Balls on Tracks – Introduction to Probabilities

Suppose balls are repeatedly set in motion so that at the instant a ball leaves level 2, another ball is released onto level 1.  This creates a periodic motion.  Define T as the total time for a ball to run through the two levels.

Exercise 2.2a:  Find T in terms of L and v1.

Exercise 2.2b:  If you are taking pictures of the ball at random times, will there be more pictures showing the ball on level 1 or on level 2?  Why?

Exercise 2.2c:  Find P1, the probability of finding the ball on level 1, and P2, the probability of finding the ball on level 2.  

2.3  Balls on Tracks – The Probability Density

For the next several questions assume that the lengths of level 1 and level 2 are L1 and L2 where  L1 ≠ L2.

Exercise 2.3a:  Find the period, T, in terms of L1, L2 and v1.  Explain how you arrived at your answer.

Exercise 2.3b:  Find P1, the probability of finding a ball on level 1 in terms of T, v1, and L1.  Also find P2, the probability of finding it on level 2 in terms of T, v2, and L2.

Exercise 2.3c:  How much time does the ball spend between x1 and x1 +(x, where x1 and x1 +(x are both between 0 and L1?

Exercise 2.3d:  Use your answer from exercise 2.3c to find P(x1, (x), the probability of finding the ball between x1 and x1 + (x.

Exercise 2.3e:  Find P(x2, (x), the probability of finding the ball between x2 and x2 + (x where x2 and x2 + (x  are both on level 2.

Exercise 2.3f:  In the space below sketch a graph of P(x, (x) vs. x for all x on both levels.

We define a function called the probability density as (x) = P(x, dx) / dx = 
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Exercise 2.3g:  Using your results from exercises 2.3d and 2.3e and the above equation, find the probability density function, (x), for all x (levels 1 and 2) as a function of T, v1, and v2. 

In exercises 2.1a through 2.3g, you went through a series of steps guiding you through the process of calculating a probability function given a physical situation.

Exercise 2.3h:  Using these steps as a guide, find an equation for (x) given a conservative system with an arbitrary potential energy function V(x) and total energy E.  Hint: don’t try to calculate T (it would involve an integral) - just keep it in the equations as a constant.  (Later you will learn a trick for calculating it.)  Hint 2: don’t confuse v the velocity with V the potential energy.

3.  Experimenting with Probability Density
Using digitized video we can get a frame by frame series snapshots of the position of an object at a rate of 30 or 60 frames per second.  If we play the frames in order we see the motion of the object as it happened – essentially viewing x(t) as calculated by Newton’s Laws.  However if we play the frames in a random order we can’t really see the motion at all.  We can only see the probability density – if you see lots of frames with the object in one specific position then the probability density is high there – if you see only a few frames with the object in some other position then the probability density is low there.

3.1 The Harmonic Oscillator

Consider the experiment shown in figure 3.1a.  A glider sitting on an air track is attached at either end with two identical springs.  Assume the glider moves without friction and that the track is level.
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Figure 3.1a:   Diagram of the glider and springs experiment.

Exercise 3.1a:  Describe the motion of the glider and discuss at what locations on the track the glider is moving faster and slower.

Exercise 3.1b:  On the graph provided, sketch the speed of the glider as a function of x.   Then divide the range of motion of the glider into 8 regions of equal length and separate them with vertical lines on your graph.
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Exercise 3.1c:  What determines the probability that a randomly taken picture will show the cart in a given region?  Explain your reasoning.

Suppose the whole setup is in a dark room with a small, randomly flashing light bulb attached to the center of the glider.  A photograph of the glider is then taken with an exposure time much longer than the period of oscillation allowing hundreds of flashes to be imprinted on the film as bright dots.  

Exercise 3.1d:  Predict what the picture will look like.  Then ask your instructor to see a picture and verify your results.   

Activity 3.1a:  Use the Classical Probability Explorer program to view the Harmonic Oscillator video.  See the appendix to learn how to use Classical Probability Explorer.

Exercise 3.1e:  Write a formula for the potential energy function, V(x), for this case.  Use k for your spring constants.  Graph this function in the space below or attach a printout of a graph from some other graphing program.

Exercise 3.1f:  Write a formula for the velocity as a function of position, v(x), for this potential given some initial total energy, E.  Graph this function also – pick some reasonable numbers for your constants.

Exercise 3.1g:  Write a formula for the probability density function, (x), for this potential and total energy (Just leave T as a unknown constant).  Graph it also.

Activity 3.1b:  Use Classical Probability Explorer to take data on the Harmonic Oscillator video.  See the appendix for instructions on how to do this.

Exercise 3.1h:  Sketch or print out and attach the experimental graph of probability density that you obtain.  Compare it to your predictions above – discuss any differences.

3.2 The Infinite Well

Consider a cart (shown in figure 3.2a) moving freely along a track, but confined to stay on the track by springy bumpers at both ends of the track.  The bumpers produce elastic collisions with a (fairly large) spring constant kb (so that the bumpers don’t have very much give).  Assume the glider moves without friction and that the track is level.


[image: image6.wmf] 

Cart

 

Track

 

x = 0

 

x 

 

x = L

 

x = 

-

L

 

d 

 

d 

 


Figure 3.2a:   Diagram of the glider with bumpers experiment.

Exercise 3.2a:  Describe the motion of the glider and discuss at what locations on the track the glider is moving faster and slower.

Exercise 3.2b:  Sketch a graph of the potential energy function, V(x), for this case.

If the bumpers are extremely stiff (k very large) then we can approximate the potential energy function with an “infinite well”.  In this case, V(x) = 0 when –L<x<L and V(x) =  when x<-L or x>L as graphed in figure 3.2b.
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Figure 3.2b: The “infinite well” potential energy diagram

Exercise 3.2c:  Write a formula for the probability density function, (x), for this potential and some total energy, E (Just leave T as a unknown constant).  Graph it also.

Activity 3.2a:  Use the Classical Probability Explorer program to view and take data on the Infinite Well video.

Exercise 3.1h:  Sketch or print out and attach the experimental graph of probability density that you obtain.  Compare it to your predictions above – discuss any differences.

3.3 The Sloped-Bottom Infinite Well

If we raise one end of the track shown in figure 3.2a just a small amount then the resulting potential energy diagram can be approximated as a sloped-bottom infinite well.  Then the potential energy function can be written as V(x) = mx when –L<x<L and V(x) =  when x<-L or x>L as graphed in figure 3.3a.  (m would be the slope of the bottom of the well.)
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Figure 3.3a: The “sloped-bottom infinite well” potential energy diagram

Exercise 3.2c:  Write a formula for the probability density function, (x), for this potential and some total energy, E.  Note that although one of the turning points is always at x=L, but the other turning point can be anywhere between –L and L depending on the total energy – this will make the formula more complicated.  Graph it for a value of E that makes the other turning point at x=-L and graph it for a value of E that makes the other turning point at x=0.

Activity 3.2a:  Use the Classical Probability Explorer program to view and take data on the Sloped-Bottom Infinite Well video.

Exercise 3.1h:  Sketch or print out and attach the experimental graph of probability density that you obtain.  Compare it to your predictions above – discuss any differences.
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